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1. SUMMARY 
 

 At the start of the XDATA program, Dr. Chris White challenged Draper to 
innovate a new capability and apparatus for understanding the usability and 
adoptability of applications designed to support data analytics professionals. 
While Draper previously demonstrated the utility of ingesting software activity 
logs into pre-processing methods for psychophysiological research in user 
engagement, Dr. White further challenged us to accomplish this task without the 
use of traditional laboratory sensors. Essentially, Draper was challenged to 
develop methods and apparatus that would turn analytics software applications 
themselves into measurement mediums for usability and adoptability. After four 
years of scientific research and software development, Draper has demonstrated 
this very capability and has engineered an apparatus to provide this capability as 
a service. We call this capability Software as a Sensor™ (SensSoft).  
 As one of the world’s leaders and innovators in instrumentation, signal 
processing, and both modeling and simulation, Draper takes very seriously the 
vision of software that serves as a sensor for gathering data about user behavior, 
modeling it to uncover both user-specific and canonical behavioral patterns that 
indicate proficient end-use. Draper developed for the XDATA program: 
• An Analytic Logging Engine to facilitate collection of this data from both 

prototype and mature software environments  
• Modeling approaches that capture how users sequence and integrate 

features of software applications 
• Validated metrics for quantifying how well users understand how to use 

applications to perform real-world tasks 
• A testing framework for performing usability evaluation at large scales. 

 
 When Dr. Wade Shen assumed control of XDATA program, he challenged 
Draper to reduce this technology to practice, and provide interfaces into modeling 
techniques and metrics such that software developers could make use of them to 
improve their applications. To meet this challenge Draper: 
• Engineered its Analytic Logging Engine to require minimal effort for 

deployment 
• Developed software stack to support both analysis, for direct interface with 

user activity logs, and visual analytics to extract insights that can be used to 
iteratively improve applications 

• Configured a constellation of components into an easy-to-deploy package 
  
Apache Software as a Sensor™ (SensSoft) is now a viable product, available 

to everyone through the Apache Software Foundation (ASF) that is undergoing 
transition at the National Geospatial Intelligence Agency (NGA) through a 
CRADA agreement, and is being used for other Science & Technology (S&T) 
efforts at DARPA and IARPA. 
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2. INTRODUCTIONS 
 

 Draper’s efforts on the XDATA program fall into three main tasks: Software 
Development; Publicity and Community Development; Evaluation and Human 
Subject Research Activities. These are described in depth in the sections below. 

 
2.1. Software Development 
 

 Draper’s software development activities incorporate all work to develop a 
user activity logging apparatus, and supporting elements: analytics stack; 
application program interfaces (APIs); visualization and visual analytics; 
experiment management services. This task also includes documentation and 
software repository management. Consistent with our XDATA contractual 
requirements, all software developed under contract is licensed for open-source 
use. Draper has exceeded this requirement by transitioning all code developed 
on the XDATA contract to the Apache Software Foundation (ASF), the world’s 
premier open-source software foundation. 

 
 

2.2. Evaluation and Human Subjects Research Activities 
 

 Under direction of Dr. Chris White and Dr. Wade Shen, Draper’s role under 
Technical Area 2 of XDATA was both to innovate new methods and apparatus 
for understanding usability, as well as to use these new methods in service of 
evaluating core XDATA program products developed by other performers. This 
activity incorporates efforts to innovate new methods of evaluating tools and 
performing evaluations, including: managing an extensible, multi-site human 
subjects research protocol, approved by a human subject internal review board 
(HSIRB); coordinating and executing data collection activities, both small and 
massive; developing experimental artifacts, such as experimental tasks and 
questionnaires; managing and integrating laboratory equipment; algorithm and 
analytics development; hypothesis testing; producing evaluation reports. 
 

2.3. Publicity and Community Development 
 

 In the fourth year of the XDATA program, Draper worked to foster a 
community of interest around our open-source software as a transition activity. 
This activity incorporates efforts to increase the public awareness of Software as 
a Sensor™, including: work to transition Software as a Sensor™ to other 
agencies (e.g., NGA); work to transition SensSoft to the ASF; development of 
both corporate and Apache marketing and documentation websites; generation 
of marketing materials; social media campaigns; academic/industry conference 
attendance, demonstrations; and public exhibitions. 
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3. METHODS, ASSUMPTIONS, AND PROCEDURES 
 
3.1. Software Development 
 

 In developing open-source software technology, Draper sought to design and 
develop applications that are light-weight, easy to maintain, and developed from 
other open-source components licensed under maximally permissible licenses, 
so as to reduce conflicts with our own licensing strategy. Below we discuss the 
classes of software developed, and class-specific assumptions. Descriptions and 
delineation of features that comprise the specific software products (artifacts) 
developed for XDATA can be found in Section 4.  

 
3.1.1. User Activity Logging Apparatus. In order to develop an apparatus for 

capturing user activities through software platforms, Draper understood the 
following design assumptions: 
• The apparatus would need to incorporate sufficient granularity in logs of 

describing human use that would enable robust signal processing and 
modeling.  

• The apparatus would need to be compatible with a range of different software 
applications. 

• A single embodiment of the apparatus would likely only be able to serve 
programs written in a specific language. 

• The apparatus would need to connect with a database capable of indexing 
single log messages and managing logs. 

• The database serving the apparatus would need to have interface end-points 
so that log data could be transmitted or utilized by other processes 
(analytics). 

• At least in prototype versions of the apparatus, adaptations to the source 
code of applications would need be made. 

 

3.1.2. Experimental Management. In order to effectively execute and manage both 
small and large scale experiments, software would need to be designed to carry 
out these functions. In developing this software we operated under the following 
assumptions: 
• The software would need to support registration features for participants to 

enroll in research studies. 
• Registration information (participant identifiers) would need be passed to 

other data collection services (e.g., user activity logs, questionnaires, etc.). 
• The software would need to support pathing options for routing participants 

into different tasks. 
• The software would need to “poll” other services, and provide merge 

operations for various data sets. 
• The software would need experimenter interfaces for both tracking, and 

enrolling participants, as well as for performing analyses and basic pre-
processing. 
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3.1.3. Developer Tools. In year 2, Draper successfully demonstrated that with 
sufficient granularity in user activity logs, models and metrics could not only 
describe user behavior, but quantitatively describe both efficient and inefficient 
user behavior. In year 3, we realized that while useful from an evaluation 
perspective, the consumer of these models and metrics would largely be 
program or project managers. Thus, at the end of our third year on the XDATA 
program, we realized that to actually recommend changes that would improve 
software usability new approaches to modeling and interfacing with user activity 
logs would be needed to provide insights to developers, so that improvements 
might be implemented. In the latter part of the third and the whole of the fourth 
year of the XDATA program, Draper sought to define and implement software 
applications and new modeling techniques that would support developers and 
allow them to digest insights gleaned from user activity modeling. We operated 
under the following assumptions: 
• Developers would need to interact with both processed and raw data (user 

activity logs), using software packages that were commonly used for analytics 
and querying large databases (e.g., Python). 

• Developers would need a way to visualize or produce visual analytics that 
would help lead them to insights.  

• New scalable modeling approaches would need be developed that would 
better support visualization and visual analytics. 

 
  

3.2. Evaluation and Human Subjects Research Activities 
 

 Throughout the program, Draper was tasked to host, support and execute 
evaluation activities to support the larger XDATA program. However, given that 
Draper was a TA2 performer and challenged to develop and reduce to practice 
novel methods and apparatus for performing such evaluations, the role of these 
evaluations was two-fold: 1) to assess other performers’ work products on the 
basis of usability, and 2) to provide useful data so that novel methods and 
apparatus could be developed and validated. 

 
3.2.1. Human Subjects Research Protocol. In order to make strong inferences about 

the utility and performance of novel methods for assessing analytic software 
usability, Draper would need to collect data from humans under a research 
activity, necessitating human subjects research protections oversight and 
approvals by both local and US Government (USG) HSIRB. This was also a 
contractual requirement, stipulated by DARPA. All protocol documentation, 
approvals, and continuing review documents were provided as deliverables.  

 
3.2.2. Data Collection and Methods. In order to organize data collection and make 

meaningful inferences about the differences between different XDATA 
applications and the validity of novel models and metrics for usability, we devised 
a scalable experimental design with both between- and within-subjects 
conditions. This design allowed for compartmentalizing a few critical effects to 
reduce confounds in findings. First, this design scales with the number of 
applications (Factor 2), allowing us to test a wide range of XDATA applications, 
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and by incorporating a within-subjects condition (multiple exposures), this 
provides use with sufficient experimental power to offset scale at the between-
subjects level. Second, the within-subjects conditions (Factor 1) allowed us to 
understand whether specific tasks were more difficult than others, owing to the 
nascent functionality of the applications. Finally, a counterbalancing factor 
(Factor 3), allowed us to ensure that the order of tasks given to participants 
systematically affected their performance in repeated exposures. This 
experimental design was used to facilitate human subjects testing and data 
collection throughout the program.  

 
 The sequence of tasks distributed to research participants was also common 
throughout data collection events: 

 
1. Consent [5mins]: participants consent to participate or not. 

 
2. Intake Questionnaire [30mins max]: composed of a number of surveys 

soliciting Demographics, expertise, job/analyst experience, personality 
(pertaining to problem solving and inference)[1-7] and problem solving 
aptitude [8, 9]. 
 

3. Application Testing with Operational Task (1) [30mins max]: allowed research 
participants to interact with the application, with accompanying data within the 
context of operationally-relevant tasks paired with the data (and challenge 
problems), not specific applications. Operational tasks were composed of a 
sequence of 5 questions, requiring participants to utilize the application in 
complex ways to ascertain the answer. Operational tasks were developed 
largely without the applications under test, with support from other staff (e.g., 
Qntfy) to provide verifiable tasks that could be accomplished in “state-of-
practice” analysis tools (e.g., iPython Notebook). Answers to tasks were 
known in advance and ground truth answers were verified by both Draper as 
well as other XDATA personnel (e.g., support staff from Giant Oak and 
Qntfy). Operational task questions were largely multiple choice response 
formats (no fewer than 4 response choices). Where possible, we utilized free-
response formats, when free-response answers would be easy to parse and 
easy to adjudicate with little risk of false negatives for correct answers (true 
positive). 
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Figure 1. Sample Operational Task Component Question 

 
 

4. Post-Task Questionnaire (1) [5-10mins]: completed by participants following 
each Operational Task. Surveyed participants regarding how much 
mental/cognitive load the tool introduced to the task, how difficult the task was 
independent of the tool [10], how engaged they felt with the task [11], and 
how much they enjoyed the task. 
 

5. Application Testing with Operational Task (2) [30mins max]: a second 
Operational Task and opportunity for participants to engage with the 
application. This task is different, in terms of question content, however, is 
designed to utilize the same data used for the first task. 
 

6. Post-Task Questionnaire (2) [5-10mins]: a second post-task questionnaire, 
identical to the first, soliciting responses related to the participants’ second 
exposure to the application. 
 

7. User Comments [5-10mins]: using Nielson’s revised design heuristics for 
subjectively evaluating user-interfaces [12], we collected open-ended 
responses for each of 10 Heuristics. This provided fast feedback and user 
comments for immediate dissemination to XDATA Tool Developers. 
 

8. Debriefing: an HSIRB-approved script detailing the study hypotheses, 
purposes in greater depth for participants. 
 

 All procedures could be completed within a 1.5-2 hour period of time, 
including consent procedures. In addition to questionnaire data and free-
response data collected from participants, we collected user activity logs through 
our UserALE service, while participants interacted with applications. In 
experiments in years 2 and 3 of the XDATA program, Draper also used 
physiological monitoring protocols as part of data collection, in service of activity 
log metric development. The goal being to be able to give context to users 



Approved for Public Release; Distribution Unlimited. 
7 

 

subjective reports tied directly to observable behavior during actual application 
use. 
 

 
 

Figure 2. Experimental Design for Human Subjects Data Collection. 
  
  
 Data was collected from human research participants in three separate 
testing events, during various points in the course of the XDATA program: 
1. During the XDATA 2014 Summer Workshop, Draper completed 33 user 

testing sessions from 33 unique users, with 8 XDATA prototype applications, 
each using one or more unique datasets. Participants were furnished by 
XDATA as part of program outreach and transition endeavors. Due to 
application error, only 16-22 of participants were usable in analyses. 
Physiological data was also collected from users in this event. 
 

2. During the XDATA 2015 Summer Workshop, Draper completed 38 user 
testing sessions from 36 unique users, with 6 different applications (Aperture, 
FEAT, Minerva, Neon, Newman, Resonant). Participants were furnished by 
XDATA as part of program outreach and transition endeavors. Due to server 
crashes and participant non-compliance, task data for one or two tasks was 
sometimes unusable. Draper collected 3 more User Testing sessions 
following the Summer Workshop in order to fill these gaps so that there were 
a roughly equal number of participants allocated to each application for 
analysis. This resulted in a dataset with 33 fully complete cases (performance 
data, subjective reports, and activity logs), and 36 cases with performance 
data and activity logs. Comments, however, were not collected from the 3 
additional volunteers; all 3 opted out of those measures. Physiological data 
was also collected from users in this event. 
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3. At the end of XDATA year 3 (Q4 2015) and throughout XDATA year 4 (2016-

2017), Draper conducted a Massive Online Testing (MOT) event of XDATA 
year 3 applications (Aperture, FEAT, Minerva, Neon, Newman, Resonant). 
Testing was conducted using applications built by Draper to facilitate (see 
Findings & Results) online human subjects research at scale. The virtual 
assets for this data collection event were furnished by DARPA via 
contractors—these assets include Amazon Web Services (AWS) resources, 
such as virtual machines, load-balancers, and a web site designed to 
generate interest in XDATA (participants were routed through this site) (see 
Figure 3).  

 
 

 
 

Figure 3. XDATA MOT Infrastructure. 
 

Data was collected through Amazon’s Mechanical Turk (MTURK) panel 
service. Roughly 1,180 MTURK users participated in the XDATA MOT. Of 
these participants, roughly 800 were suitable for analysis due to non-
completion of measures, drop-out or other reasons. 
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3.2.3. User Activity Logging Modeling and Metrics Validation. In selecting and 

developing modeling approaches to understand human use of analytic software 
applications, Draper reviewed the extant research literature (and existing 
commercial offerings), identifying key gaps in the insights gathered from similar 
approaches. As a result, the following assumptions guided our efforts in 
developing modeling and descriptive metrics for evaluation purposes: 
• Models for human usage would need to incorporate both how users allocate 

effort across the features of applications (e.g., application space), and the 
temporal patterns with which users work with applications (e.g., application 
time). Only by combining elements of “space” and “time”, would we be able to 
sufficiently model workflow in a disaggregated way. 

• Models for human usage would need to incorporate methods that allowed us 
to model canonical tool use, not just single use sessions, or particular users. 

• Models would need to produce output that would be easy to incorporate into 
visual analytics or visualizations. 

• Metrics would need to describe model characteristics that are intrinsic 
features of all models of different applications, so as to make one model 
comparable to others across the same metrics, with a similar interpretation. 

• Metrics would need to be intuitive in their meaning, such that they directly 
indicate some key pattern of life or some strategy of use. Thus, validation of 
such metrics would provide tests of key behavioral patterns rather than a 
strict “data mining” activity for numbers that correlate with validation criterion. 

• Metrics would need to be validated against traditional or “state-of-practice” 
measures, so as to not only verify that they contain the same (or more) 
information as traditional metrics, but also validate their utility and sensitivity 
against “’state-of-practice” measures as benchmarks. 

  
3.2.4. XDATA Application Evaluation. Part of Draper’s role on XDATA was to use 

both “state-of-practice” methods and novel methods and apparatus developed in 
course of the XDATA program to evaluate other performers’ products. In serving 
in an evaluation role, we made the following assumptions: 
• Comparisons between applications would utilize metrics and methods 

designed to ensure that applications were compared at a level of abstraction 
such that meaningful differences between applications could be ascertained; 
applications would be compared against metrics that are equally informative 
for all applications (e.g., “apples-to-apples”, not “apples-to-oranges” 
comparisons. 

• Evaluation activities would coincide with metric validation activities for novel 
models and metrics, so as to provide meaningful, scientifically rigorous 
context to performers and programs personnel so that novel metrics are 
interpretable in relation to “state-of-practice” methods and metrics. 

• Steps would be taken to invite fair comparisons of applications wherever 
rankings were produced. This includes normalization or weighting techniques 
to ensure that quantitative differences reflecting the sensitivity of measures is 
taken into account prior to making judgements about the ranks of 
applications. 
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3.3. Publicity and Community Development 
 

 In the fourth year of the XDATA program, Draper worked to foster a 
community of interest around our open-source software as a transition activity. 
This community was to include both end-users of the technology, as well as 
prospective contributors—people that would want to help grow our technology. In 
order to accomplish this, Draper engaged in a number of outreach, marketing 
and community activities, operating under the following assumptions:  
• Draper’s Software as a Sensor™ open-source offerings would be more 

successful as community tools if they were included within a larger 
interconnected community that had an existing brand and public following 
(e.g., Apache Software Foundation). 

• Draper would need to engage the public directly in marketing Software as a 
Sensor™ open-source offerings through public showings, exhibitions, and 
lectures. These activities would need to broadly canvas prospective users, 
including commercial, government and academic, and would need to coincide 
with industry meetings, conferences, tradeshows, etc. 

• The funding provided for “productizing” Draper’s Software as a Sensor™ 
open-source offerings in the fourth year would likely be sufficient to produce 
“minimally viable products”; for widespread adoption, enterprise level maturity 
would be necessary in order to accelerate and maintain a community of 
interest. As such working with US government end-users in “transition” 
activities would provide a means to identify and develop road-maps for gaps 
in Software as a Sensor™ open-source that would need to be addressed to 
make them viable to large enterprises. 

 
4. RESULTS AND DISCUSSION 
 
4.1. Software Development 
 

 Across 4 years as a performer on the XDATA program, Draper has imagined, 
innovated and engineered a viable open-source system for collecting user 
activity data, analyzing it for insights related to how usable and adoptable 
productivity (and/or analytic) software is. In year 4, Draper completed 
developments of an integrated Software as a Sensor™ system (Figure 4), and 
transitioned the open-source project to the ASF and DoD transition partners at 
NGA. Developments on the components of the system are described in 
subsequent sections, the system itself is deployable as an integrated whole 
through a pre-configured Docker container. Additional information about the 
project as well as all deployment and build documentation can be found at 
http://SensSoft.incubator.apache.org 
 
 

http://senssoft.incubator.apache.org/
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  Figure 4. The Apache Software as a Sensor™ System. 
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4.1.1. The Apache User Analytic Logging Engine (ALE) product. In May 2015, we 

deployed UserALE v3 and began assisting developer in implementing it for User 
Testing and Online Testing. When users interact with specific elements (e.g., 
button, map, table) of an application, UserALE code injected into the source code 
related to those elements package and send a light-weight Java Script Object 
Notation (JSON) message detailing which class of event (e.g., Click, Hover, etc.) 
activated the User Interface (UI) element. UserALEv3 was a dramatic 
improvement over UserALEv2, and UserALE, which were simple prototypes 
(Year 1 and 2 outputs). Much of these improvements were related to making it 
easier for developers to apply labels to the API. Rather than mapping UI 
elements to specific kinds of analytic workflow components (e.g., Explore Data, 
Create View, etc.). These workflow components were derived from year 1 
qualitative studies with analysts. However, in implementation developers had 
difficulty fitting these labels in mutually exclusive ways to their UI components 
(see Figure 5).  

  

 

 
 

Figure 5. UserALEv2 Logging Schema. 
 

 
 UserALEv3, in contrast, adopted a ground-up model, letting developers label 
the elements and element groups of their application as they felt most 
appropriate. UserALEv3 information was very close in kind to Google Analytics, 
Adobe Ominture, Piwick and similar (Figure 6).  
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Figure 6. UserALEv3 Logging Schema as Depicted in JSON format. 

 
 

 Another major upgrade was the integration of ELK Stack (ElasticSearch, 
LogStash, Kibana), which improves our capabilities for rapidly collecting, 
archiving and accessing activity log data. Integration with Kibana provides an 
agile, configurable set of dashboards that developers (and programmatic 
personnel) may configure however they like to examine net usage of applications 
as well as what features of the applications they are using most. Kibana is also 
immensely useful for assessing how effectively UserALE was implemented, both 
evaluation and developer roles (Figure 7). 
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Figure 7. Kibana Dashboard for Visualizing Application Use. 
 
 

 In May 2016, Draper released UserALE.js, culminating in a viable productized 
version of our logging apparatus. UserALE.js has a number of improvements 
upon UserALEv3, including a dramatic reduction in level of effort (LOE) for 
deploying UserALE.js. UserALEv3 required developers to manually apply “hooks” 
for the UserALE service API throughout their source code. UserALE.js removed 
this dependency, reducing instrumentation to the application of a single line of 
code, injected into the top of the source code. This code is a “script tag”, which 
calls UserALE.js that exist outside the application. When called, UserALE.js 
initiates messaging services, recording the event received by event handler, the 
target element that received the event, the nesting of that target element within 
the applications’ Document Object Model (DOM) branching structure, cursor 
screen coordinates (x,y), and other configurable parameters (see Figure 8). In 
this way, UserALE.js is directly competitive with modern commercial services in 
terms of implementation, and is superior with respect the granularity of data 
contained in each log. This provides sufficient granularity for signal processing in 
a way that is reduced-to-practice and enables detailed workflow modeling as 
described in later sections. A persistent, live demonstration of UserALE.js is 
available at http://senssoft.incubator.apache.org. Not only does UserALE.js 
dramatically reduce the LOE for deployment, but enhances the richness in the 
data that the UserALE service provides for user activity gathering in web 
applications.  
 
 
 

http://senssoft.incubator.apache.org/
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Figure 8. UserALE.js Demonstration and Log Structure. 
  

 
4.1.2. The Apache Distill Product. In year 3, Draper realized that one of the most 

important user sets of usability findings are software developers themselves. 
Draper therefore began developing concepts and software for developers to 
interface directly with UserALE data, analyze it themselves and visualize it in 
distinct ways suited for developers. Our concept for Distill changed dramatically 
from year 3 and year 4, but the underlying theme behind Distill is to provide a 
direct interface between developers and UserALE data.  
 In year 3, we envisioned Distill as a simple web application to clearly and 
concisely deliver usage analytics. It visualized results such as sub-sequence 
metrics and demographic data in a way that enables developers to explore and 
understand how people are using their applications. This would allow developers 
to build a better understanding of their users, identify actionable insights, and 
ultimately iterate and improve their applications. In year 3, we thought to provide 
developers direct access to their users’ sequential behavior, visualized as 
clusters of sequential behavior, with weights applied to how frequently users 
were observed within those workflows. These insights were observable through a 
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“sunburst” plot. This version of Distill thus attempted to provide developers a 
clear way to understand how their users integrated features in time (sequentially) 
to perform tasks. Developers could then subset user sets to explore how different 
classes of users made use of the application, for added insight (Figure 9).  

 

 

Figure 9. Early Distill Concept Interface (Year 3). 
 

 In year 4 of the XDATA program, we completely re-engineered Distill in the 
service of productization. Rather than a user interface, we re-imagined Distill as a 
data interface and analytics stack, or framework. As the analytic framework of the 
Software as a Sensor™ Project, it provides segmentation, statistical packages 
and graph analysis for describing users’ interactions with the application to 
adopters. Distill is written in Python and utilizes packages like Continuum 
Analytics’ sci.py and num.py packages for statistical processing, and open-
source packages like NetworkX for producing graph models. Distill is engineered 
so that certain aspects of processing can be off-loaded outside of Distill’s own 
Python environment, so that developers and data scientists can work with their 
data using their own analytics environment (e.g., Anaconda), but retain the ability 
to connect to UserALE data and Distill’s segmentation functions. Distill provides 
an interface directly into UserALE log databases, providing representational state 
transfer (REST) interfaces and structured query services for calling data, and 
applying a variety of models to that data. The segmentation feature allows 
developers or data scientists to focus their analyses of user activity data based 
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on desired data attributes (e.g., certain interactions, elements, etc.), as well as 
attributes describing the software tool users, if that data was also collected. 
Distill’s usage and usability metrics are derived from a representation of users’ 
sequential interactions with the application as a directed graph. This provides an 
extensible framework for providing insight as to how users integrate the 
functional components of the application to accomplish tasks. Figure 4 provides a 
schematic for how Distill connects and serves other Software as a Sensor™ 
services. 

 

4.1.3. The Apache Test Application Portal (TAP). After the reimagining of Distill in 
Year 4, Draper developed a service for visualizing data processed through Distill, 
and a user interface (UI) for making queries against Distill for data and post-
processing of that data for visualization. TAP was developed to fulfill this need, 
with additional features to provide a variety of functional front-end capabilities to 
developer end-users. 
 TAP is designed to be a scalable visualization platform to support the open-
source Apache SensSoft project community. In this respect, adopters of TAP will 
be able to configure how various filter settings connect with their unique data 
structure, and add visualization assets for viewing their data as they see fit. In 
this way, development efforts emphasized integration of TAP with the rest of the 
Apache SensSoft project components via RESTful interfaces (see Figure 4). In 
order to serve visualization and integration needs, we developed TAP using 
Python and Django. This provides some useful features for user management, as 
well as a customizable environment that developers can use to embed 
visualization assets from open-sources like Data Driven Documents (D3) and 
REACT. 
 Draper focused its development efforts for TAP visualizations on unique 
features that were not otherwise included in other packages. For example, for 
users that are simply interested in seeing count or frequentist data on how many 
UI elements were interacted with or number of users, they may simply benefit 
from using Elastic’s Kibana dashboard. Moreover, features like these are simple 
to “drag and drop” and configure in TAP using open-source assets like D3 (e.g., 
histograms). As such, Draper developed an interface that highlight the 
discriminating capabilities of Apache SensSoft, including graph analytics (via 
NetworkX libraries) for workflow models and version-to-version testing, i.e., A/B 
testing comparisons of activities from one version of an application and another 
(Figure 10) (via Continuum statistics packages like SciPy, and NumPy). Among 
our key innovations in visualizations is a customized chord chart with integrated, 
interactive visualizations for graph metrics (the “Bowie” plot) (Figure 11). 
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Figure 10. Apache TAP Dashboard for User Activity Analysis. 

 

 
Figure 11. Apache TAP Dashboard for Visualizing User Workflows. 
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 TAP’s features for supporting the procedural aspects of user management 
are built on top of Django. Django is a Python development framework that 
makes it easier for others to make and add functional modifications. One of the 
key features leveraged for TAP, in this respect, is Django’s ability to negotiate 
individual user permissions (e.g., registration, access controls, and persona 
management). This allows each adopter of TAP to register their own account 
within an instance of TAP, customize their views and utilities, independent of how 
other adopters might use it (e.g., persona management). However, TAP supports 
an information model that allows user to register as children of a parent 
organization, providing a means for sharing access to data stored in Elastic 
databases at an institutional level, and modifying these views at the individual 
user level. 

  
4.1.4. The Apache Subject Tracking and Online User Testing (STOUT) product. 

The Subject Tracking for Online User Testing (STOUT) application was a 
prototype in year 2 and was developed into a functional suite of software in year 
3 to assist with various human subjects data collection activities. STOUT’s base 
functionality enables managing user pathing through experimental tasks (Figure 
12), and providing an instrumented interface for users to start and move through 
tasks presented through web forms (e.g., SurveyMonkey) in a way that is non-
invasive with respect to access to a test application and the performance of that 
application (Figure 13). Notable improvements include an improved user 
authentication system, the addition of experiment and achievements models to 
improve user tracking and engagement, a simplified process for registering new 
tools, and a UI refresh. In addition to design and implementation improvements 
on the STOUT system, we developed a larger ecosystem for integrating 
analytics.   
 
The evaluation ecosystem can be seen in Figure 14 below and shows how 
STOUT integrates with the analytical tools SurveyMongo, Scale Computation 
and Codebook Handling (SCO+CH), and Distill.  STOUT sits in the center and 
functionally coordinates the entire data collection and analysis pipeline through a 
RESTful API.  STOUT, SurveyMongo, SCO+CH (see Figure 14), and Distill are 
all products developed during year 3.  
 
STOUT collects, organizes and stores metadata about participants along with 
task assignments and progress metrics. It is a content management system for 
formal human performance experimentation. STOUT presents tools and 
operational tasks to each participant. It tracks progress on an intake 
questionnaire to assess the user’s background and experience as an analyst, 
and operational task performance. The STOUT system provides human-subjects 
testing experiment administrators with a flexible tool for managing and tracking 
user progress through a series of online tasks. The STOUT system was 
designed to help collect information about the utility of online applications. 
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Figure 12. STOUT Participant Task Pathing Display, with Achievements. 
  

 

 
 

Figure 13. STOUT Task Portal. 
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Figure 14. Draper's Evaluation Ecosystem. 
 
 

 STOUT is a web based database application built using the Django 
framework. The data models can be seen in Figure 15. STOUT assigns 
registered users a user profile that is associated with their account and used to 
track their progress through the experiment. For year 3, the user authentication 
system was upgraded to include Django’s built-in authentication authorization 
system which provides individual and group access controls to restrict navigation. 
New administrative features for managing content were implemented to provide 
additional enforcement of authorization protocols.   
 The remaining STOUT data models in Figure 15 provide content tracking and 
management throughout the experiment. A registered user is assigned an 
Experiment object that dictates the number of tasks to be completed, the time 
allowed for each task, whether or not these tasks should be done sequentially or 
not, and if the particular experiment requires an intake and post task 
questionnaire. Individual tasks are managed with the Task List Item object that 
provides an association between a User, a Task and a Product (tool). Tasks and 
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Products are associated with one another through a common Dataset (challenge 
problem). A final data model was added for Achievements to further incentivize 
participation by rewarding top performers or active participation.  Achievements 
can be earned for accuracy, completion time, and peer referrals. 

 
 

 
 

Figure 15. STOUT data models and their organization. 
 
 

 A group of administrative controls were added to STOUT for year 3.  These 
controls simplify the addition and management of all the data models within 
STOUT. Now, any user with the proper administrative authorization can add or 
manage products (tools) and their associated tasks. New users can be registered 
by administrators prior to their participation to facilitate the experimental process. 
Task and product (tool) assignment can also be managed directly from the 
experiment administrator portal (Figure 16). Additional features for the 
experiment administrator through the new portal include viewing results 
generated from apps connected on the analysis pipeline (see Figure 17).  
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Figure 16. STOUT Participant Administration/Management Features. 
 

 

 
 

Figure 17. STOUT’s D3 Visualization of Processed Data. 

 In preparation for the massive online experiment hosted at the end of year 3 
and during year 4, a number of security features were added to STOUT, and a 
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number of vulnerabilities were tested. Figure 18 summarizes a comprehensive 
list of these security tests performed to maintain data and application security 
during online testing. 
 
 

 
 

Figure 18. STOUT security vulnerabilities tested and addressed in year 3. 
 
   

 SurveyMongo is a small scale application deployed with STOUT and enables 
STOUT to poll multiple data sources (e.g., questionnaire data, user registration 
data, etc.) (Figure 14). It is a web based database application designed to 
automate and index task response data from participants and prepare it for 
analysis. The tasks that are presented through STOUT are created with surveys 
built at SurveyMonkey.com. These surveys are then presented to the user 
through an interface in STOUT. Every response that the user submits is 
appended with a unique hash created from the user’s username to ensure 
anonymity but preserve traceability between users during analysis.  
SurveyMonkey.com provides an API to access responses and that API was used 
to build SurveyMongo.   

Topic Vulnerability / Risk Complete Dependency
Limit admins More accounts for potential unauthorized access Yes Internal
Limit real-time updates Chance of inadvertently taking out existing functionality Yes Internal
Use current versions Prevent usage of modules with known security risks. Yes Internal
Secure code storage Unintended visibility or execution of Python code Yes Internal
NGINX configuration Set up general security settings on NGINX installation Yes Internal

Topic Vulnerability / Risk

Secure user input Prevent SQL injection attacks Yes Internal

Backup database Loss of data if corrupted or accidentally deleted. Yes Internal/L-3
Secure Postgres Unauthorized users gaining access to DB contents. Yes Internal
Encrypt database Unauthorized users gaining access to DB contents, even if encrypted. No Internal
Password complexity Prevent easy password cracking Yes Internal
Data exfiltration prevention Data leaving database unnoticed No Internal
Protect PII Loss of privacy for user group Yes Internal
Secure user credentials Loss of privacy of user credentials Yes Internal
Separation of resources Accessing DB through web app Yes Internal

Topic Vulnerability / Risk
Web Application Firewall (WAF) SQL injection, XSS, CSRF, etc. Yes Internal
HTTPS only Passing unencrypted data such as logon credentials; MITM attacks Yes Internal/External
Secure session ID XSS by guessing session IDs Yes Internal
Session Security XSS by reusing session IDs Yes Internal

Limit User Sessions

Denial of Service attack through opening excessive sessions (Other DDoS risks, 
but this is a nice idea for preventing increased system load and one avenue to a 
problem.) Yes Internal

Auto-escape with templates XSS in Django 1.7 Yes Internal
CSRF protection Prevent usage of one user's credentials by another user Yes Internal
Clickjacking prevention Prevent malicious rerouting of users via content in hidden frames. Yes Internal

Older browser security
Browsers older than IE8, Firefox 3.6.9, Opera 10.5, Safari 4, and Chrome 4.1 won't 
prevent clickjacking with the above settings. No Internal

Authentication throttling Avoid brute force attacks Yes Internal

Lock root account Rogue user gets access to root account and has privileges to access entire server. Yes Internal

Prevent hanging sessions
User leaves browser open and unauthorized user uses account before the 
session expires. Yes Internal

XDATA Security Topics
General Security

Database

Web Application
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 The main requirement that drove the design and implementation of 
SurveyMongo was the need to organize data by participant. SurveyMonkey.com 
organizes response data by survey, but our analysis pipeline requires that data 
be organized by participant. SurveyMongo downloads response data for all tasks 
from SurveyMonkey.com and then re-indexes it by participant, combines it with 
logistical data from STOUT, and organizes it into a tabular format where each 
row is a unique user and the columns are all the features of interest.  As seen in  
Figure 14 above, this table then used by SCO+CH to perform additional scale 
computations and append metrics to this table that can be used in analyses and 
viewable through STOUT.  
 SCO+CH is an R language script concept for automating form data 
(questionnaires, surveys, etc.) post-processing and managing codebooks for 
large research datasets. Particularly for datasets that need be shared across 
sites and those that might contribute to legacy datasets, it is imperative to 
carefully manage how raw data is combined or aggregated into composite 
variables that may then be used in statistical analyses and hypothesis testing. 
This is critical to ensuring that empirical findings can be reproduced and 
expanded upon and requires tracking how raw data is weighted, normalized, etc., 
before aggregation into composite variables. In reality, many researchers 
calculate and name composite variables for use in research using private 
schemes and code bases, in a variety of statistical (SAS, SPSS) and engineering 
tools (MatLab, Python). These formats and methods are not often 
interchangeable or interoperable, making standardization of methods and sharing 
research data difficult. 
 In preparation for the Massive Online Experiment, we began developing an R 
code base with functions designed to read and manage codebooks containing 
metadata about how raw data is aggregated into composites, scales, etc. 
SCO+CH ingests both raw data and a codebook, applying item reversals, 
weighting schemes, etc. SCO+CH capitalizes on a standardized variable naming 
convention to parse variable names of raw data variables and composites to be 
computed. Based on the structure of these variable names, SCO+CH will 
compute these composites using the correct raw data variables (Figure 19). 
SCO+CH keeps master data tables organized for shared use, and allows for 
scalable data collection efforts by preventing the need for “hard-coding” 
aggregation commands when new data is added to the raw dataset. So long as 
the raw data variable naming convention conforms to a certain scheme, new 
logic for computing new composites can be input using the variable of the 
desired composite.  
 SCO+CH is currently integrated into the Evaluation Ecosystem (Figure 14) 
and computes metrics from questionnaire data and activity log metrics. While 
currently a series of scripts integrated into an application with a simple wrapper, 
we intend on developing it further and releasing it as an open source R library 
that anyone can benefit from. SCO+CH is integrated into the Online Testing 
Infrastructure as a script wrapped to function as a web app. In this way, other 
applications (e.g., STOUT) can initiate SCO+CH scripts, which then produces 
metrics and composite variables automatically (see Figure 19).  
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Figure 19. SCO+CH Aggregation Operations. 
 

  
4.2. Evaluation and Human Subjects Research 
  

 An important aspect of Draper’s role on the XDATA program was evaluation 
and human subjects research. These two activities worked hand in hand, as the 
challenge issued to Draper by DARPA was to innovate in methods for evaluating 
software. As such, as we collected data for evaluations, we used that data for 
developing new modeling approaches for user activity logs and validating 
quantitative metrics for use in evaluation. 
 

4.2.1. Evaluation Events. Throughout the course of the XDATA program, Draper 
worked with DARPA to plan and oversaw 3 data collection events (years 2, 3, 4). 
Given the maturity of applications in year 2, rather than an evaluation, year 2 
served as a means to demonstrate and validate initial capabilities in user activity 
logging and analyses of prototype applications. Evaluations were performed in 
both year 3 and 4, however, as DARPA issued guidance to performers to 
enhance prototype applications and productize them for public and USG 
consumption. 
 

4.2.2. User Activity Logging Modeling and Metrics Validation. As part of our role on 
the XDATA program, we were challenged to create new, objective metrics 
regarding analytic application usability. In order to accomplish this we adapted 
modeling techniques developed on internal research and development (IR&D) 
funding, as well as innovated new approaches. These modeling techniques are 
designed to exploit the information contained in user activity logs (collected 
through UserALE products). Metrics that describe the properties of models 
developed were identified and then validated against current state of the art 
methods for ascertaining usability. Overall, validation research conducted in year 
2 of XDATA, as well as research that coincided with application evaluations in 
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year 3 and 4 provides confidence that data we collected from applications (via 
UserALE products) contain objective usability information. This research also 
provides confidence that the modeling approaches we applied to that data also 
yield information related to usability. At each year we were able to replicate these 
findings, demonstrating a capability for providing objective, minimally invasive 
software usability analysis. Additionally, in each year, as we assessed more 
mature applications tied to more complex, real-world analytic concepts of 
operation (CONOPS), we showed generalizability evidence that our technology 
and modeling approaches are capable of adding value both in and outside of the 
laboratory—replication and generalization are the benchmarks of successful 
science and technology.  
 In 2013, Draper adapted Beta Process-Hidden Markov Modeling (BP-HMM) 
for use in modeling sequential behavior data from software activity logs [13]. A 
Hidden Markov Model (HMM) is a type of Markov model that represents the 
dynamics of a stochastic system as a set of states and state transition 
probabilities, where the states themselves are not observable. A data 
(observation) sequence is generated by an HMM according to the set of 
observation probability distributions associated with the hidden states, and the 
state transition probabilities of the model, both of which are learned from the data 
[14]. Hidden Markov models have been applied in many cases to understand 
sequential human behavior and workflows, such as how body movements are 
coordinated (from motion capture), goal-related behavior in robotics research, 
and even behavioral (gestural) software inputs [15-18].  
 A key shortcoming of traditional Hidden Markov models is that they can only 
represent the dynamics of a single underlying Markov process, and comparing 
between two different models is like comparing apples to oranges. If we were 
only interested in examining how one user performed tasks with a given software 
application, and the unique behaviors of that user, the standard HMM formulation 
would be sufficient. However, the goal of this analysis is to understand canonical 
behavior patterns in an entire ensemble of logs. To accomplish this, we 
implemented a version of the HMM designed for multi-sequence processing, the 
beta-process HMM (BP-HMM). The BP-HMM is a non-parametric, Bayesian 
implementation of Hidden-Markov Models (HMM) that has only recently been 
introduced as a means for understanding sequential human behavior (typically 
motion capture) [19]. We have expounded on the original BP-HMM formulation 
by improving aspects of its implementation, including development of an 
automated parameter selection process and heuristics for model selection that 
reduce subjectivity [13]. The result is a global library of software usage states—
different ways that users combine software functionality to accomplish tasks—
that represents all the behavior of all users observed with an application. Once 
generated, this global library of states provides a way to describe each user’s 
session as a sequences of states and state transition probabilities, enabling 
identification of canonical software usage patterns for each software application.  
 Each state that emerges from activity logs through our BP-HMM 
implementation represents how different software activities were integrated in 
frequency and time in a way that is substantively different from other ways of 
integrating these activities (Figure 20). BP-HMM is highly germane to the study of 
software usability, how users learn to use software, and whether software makes 
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it difficult for users to coordinate their efforts on tasks, beyond the difficulty of the 
tasks themselves (e.g., cognitive load). This is very appealing from a software 
evaluation perspective. However, while BP-HMM allows for generalized models 
across users of the same software, those models do not generalize across 
different software applications. In order to make comparisons of usability across 
different applications we developed metrics in 2014 for describing gross 
properties of these models to enable these comparisons.  
 
 

 
   

Figure 20. BP-HMM Approach to Modeling User Activity Logs. 
  
 
 Though BP-HMM states are different from one another, both within and 
across different software applications, they represent the same information—the 
likelihood with which software activities are observed together in time. Thus, 
while qualitatively different, the distributions of these probabilities can be similarly 
described quantitatively, agnostic to the meaning of those activities. For example, 
if users understand an application, we would expect them to understand how to 
use different UI elements and functions together, in an integrative way. In a BP-
HMM model, this would be expressed in probabilistic distributions of activity that 
were more uniform or flat—diffused activity across the software’s functionality. 
Alternatively, reliance on just a few functions might indicate a limited 
understanding of the software and would be expressed in more peaked 
distributions. These distributional shapes can be easily described with simple 
central tendency statistics (maximums, averages) and kurtosis (sample excess 
kurtosis) statistics.  
 Central tendency statistics (maximum averages of activity frequencies) can 
help classify different states as being uniform or peaked, given the unique state 
space of each application. Kurtosis or other measures of central mass in 
distributions allow for classifications based on objective comparisons against 
excess values with more rigid definitions. Metrics can then be calculated by 
establishing the proportion of time with the application that users spend in 
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uniform or peaked states [13]. These metrics, which describe integrated or dis-
integrated use of applications, can be used to compare different software 
applications; our published work illustrates that the amount of time users spent in 
non-integrative states (e.g., “peaked states”) is positively correlated with 
measures of cognitive load [13].  
 
 

 
 

Figure 21. BPHMM States Provide the Necessary Information for Deriving 
Integrated Use Metrics. 

 
 
 Across year 2, 3, and 4 of the XDATA program we have been able to 
replicate findings between our BP-HMM integration metric and subjective reports 
of cognitive load, task difficulty, and performance. The amount of time users 
spent in non-integrative states (e.g., “peaked states”) is positively correlated with 
reports of cognitive load and task difficulty, and inversely correlated with task 
performance. We also find (across the three studies) that metrics extracted from 
the BP-HMM approach outperform any that are calculated from raw software 
activity logs, such as activity rate/min, and are competitive with eye-tracking 
metrics.  
 Cognitive load and task difficulty were key metrics against which to validate 
BP-HMM metrics for integrated (or dis-integrated) use. Where task difficulty is the 
degree to which the task is intrinsically difficult, independent of the application (or 
tool) used to perform the task (Figure 22), cognitive load is the degree to which 
the application impedes task performance, independent of how intrinsically 
difficult the task is (Figure 23).  
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Figure 22. Task Difficulty Question from Post-Task Questionnaire. 

 

 
 

Figure 23. Cognitive Load Questions as Presented in Post-Task 
Questionnaires. 

  
 Across year 2, 3 and 4 of the XDATA program we were able to confirm that 
integrative use metrics owing to the BP-HMM modeling approach are correlated 
in meaningful ways with cognitive load and task difficulty metrics. In years 2 and 
3, we were able to replicate findings from a pilot study completed under 
laboratory conditions using a simple, game-like interface (Figure 24). In this 
study, we were able to show that the time users spend in “peaked”, dis-integrated 
usage states is positively associated with reports of task difficulty (r = .62, p < 
.05; R2 = .38). In year 2 of the XDATA program, we replicated this finding (r = .58, 
p < .05; R2 = .34) using prototype applications developed by XDATA performers. 
In year 3, we not only replicated this finding, but generalized findings it to more 
mature, advanced analytic applications using large-scale datasets  and 
operationally relevant tasks crafted in collaboration with former analysts (r = .45, 
p < .01; R2 = .21). In year 4, we validated these effects at scale in a massive 
online testing events with MTURK users (r = .42, p < .000; R2 = .18) (Figure 25). 
Across each of these years, we also found that these metrics were associated 
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with task performance (Figure 26). Additonally, in each year we found that BP-
HMM metrics outperformed simple activity rate metrics that have become the 
industry standard for how to use user activity logs in workload analysis [20].  
 
 

 
 

Figure 24. Scatterplots with Regression Lines Illustrating Association 
between Objective Integration Metrics and Subjective Cognitive Load Metrics. 
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Figure 25. BP-HMM Integration Metric Effect Sizes in Predicting Cognitive 
Load, Compared to Other Metrics. 

 

 

Figure 26. BP-HMM Integration Metric Effect Sizes in Predicting Task 
Performance, Compared to Other Metrics. 

 
 In year 2, we also assessed whether the BP-HMM modeling approach was 
sensitive to the same information as eye-tracking data, which is frequently used 
to ascertain application usability. In this analysis, we modeled a time-series of 
pupil dilation data around BP-HMM specific and non-specific features. We found 
that BP-HMM features (state-transitions) embedded in the pupil dilation time 
series accounted for more variation in pupil-dilation data than either non-specific 
features (activities) or “dead-space” (null-events) (Figure 27). This suggests that 
BP-HMM metrics capture the same or similar information that is obtainable with 
state-of-the-art laboratory measures, at a fraction of the cost and with measures 
that are feasible in uncontrolled operational environments. 
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Figure 27. Relationship between BP-HMM Modeling Features and Eye-
Tracking Features. 

 

 Our findings also suggest that it may matter less that applications have 
peaked usage states, or how many they have, but rather how much time users 
spend in them. Each application may have a strong random intercept with 
respect to the percentage of time that users spend in activities. This suggests 
that while each application may have different canonical usage patterns (more or 
less integrative or “kurtotic”), applications can be ranked based on how each 
application forces them into states that illustrate less integration across software 
functionality. We are currently examining these random effects with massive 
online testing data given the substantial statistical power we were able to accrue 
through sampling. Overall, our BP-HMM metrics have direct traceability to 
software functions that can be fixed, and our data is sampled from end-use; the 
metrics described above do not depend on any particular task structure, only that 
users have their own tasks. This is a major advancement in the fields of human 
computer interfacing and affective computing. 
 In years 2 and 3, we also experimented using sub-sequence modeling as a 
complimentary approach to BP-HMM to add granularity to our analyses. Sub-
sequences are atomic-level workflows describing the patterns of activities that 
users integrate when performing tasks. We applied this approach to year 2 data 
and found that users who generated longer, repeated sub-sequences, performed 
better on tasks. We also realized that from a developer perspective, this highly 
granular perspective into usage is likely more useful than BP-HMM models for 
informing application improvement efforts. In year 3 we developed new methods 
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for extracting sub-sequences that are more germane to visualization and 
exploration. We also identified new quantitative ways of describing user’s sub-
sequences that while somewhat useful for evaluation, will prove to be more 
useful for future workflow modeling and visualization. Below we summarize our 
exploration of subsequences in Year 3 of the XDATA program. 
 For each application, the complete set of unique activity logs that could be 
generated through interaction with the interface was identified and used to create 
a master log code dictionary.  Each log was assigned a numerical value, and the 
raw activity sequences from each session were re-coded accordingly.  
 To better understand the relationship between actual sequential interactions 
with the applications and outcome measures, we partitioned each dataset into 
overlapping sub-sequences, creating a library of short activity kernels. We 
hypothesized that canonical patterns of user interactions could be extracted from 
this library and used to provide feedback to developers about specific usage 
patterns of their applications, and for identification of meta-workflows that might 
be predictive of outcome measures derived from the summer camp experiment 
(e.g. scores from OT questions, pre- and post-task survey responses) and/or 
demographic data about the participants (e.g. background, work experience).  In 
the following, we describe the process by which the sub-sequences were 
extracted, clustering of sub-sequences to identify canonical behavior patterns, 
and metrics derived from raw and meta-sequences. 
 We partitioned each dataset into overlapping sub-sequences (SSs) of lengths 
3-6 and identified the set of all the unique SSs observed across all users, as well 
as the number of times each unique sequence occurred.  We chose this range of 
lengths through experimentation with the data. The resulting number of sub-
sequences varied widely across tools, as they are a function of the total number 
of unique activities available to the user. 
 The set of SSs derived from each session contains a lot of redundancy.  
Additionally, there are many instances of singleton SSs, i.e. unique SSs that 
occurred only once across all user sessions. To extract meaningful meta-sub-
sequences from this collection, we implemented a novel fuzzy clustering 
approach that combines methods from natural language processing with 
community detection in network models [21]. 
 The fuzzy clustering approach we implemented does not technically 
constitute a ‘fuzzy’ method in the strictest sense of the word often used in the 
machine learning literature. It’s used to emphasize the fact that one of the goals 
of the clustering algorithm was to identify a set of representative SSs, as 
opposed to selection of a set of SSs from the collection as the representation of 
each cluster.  We chose to represent the collection of SSs for each application as 
a network, where each node is one of the unique SSs extracted from all user 
sessions, and the edges between nodes represent the similarity between the two 
SSs.   
 We experimented with several similarity metrics often used for approximate 
string matching [22] and selected two metrics for use in the clustering process: 
The length of the longest common sub-sequence (LCS) shared by two SSs.  
The Jaro distance 𝑑𝑑𝑗𝑗 between the two SSs.  
 
Given two strings, 𝑠𝑠1 and 𝑠𝑠2:  
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𝑑𝑑𝑗𝑗 = �
0, 𝑖𝑖𝑖𝑖 𝑚𝑚 =  0

1
3
� 𝑚𝑚

|𝑠𝑠1| +  𝑚𝑚|𝑠𝑠2| +  𝑚𝑚−𝑡𝑡
𝑚𝑚
� , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                                     (1) 

  
 where 𝑚𝑚 = the number of matching characters, 𝑡𝑡 = the number of 
transpositions, and |𝑠𝑠1| and |𝑠𝑠2| are the lengths of strings 𝑠𝑠1 and 𝑠𝑠2. Two 
characters are considered matching if they are identical and the distance 
between them is ≤ �max (|𝑠𝑠1|,|𝑠𝑠2|)

2
� − 1. The number of transpositions is the number 

of matching characters, in different sequence order, divided by 2 [23]. The scale 
of the Jaro distance metric is between 0 and 1, with 0 being a complete 
mismatch between sequences, and 1 indicating that the sequences are identical. 
 Both metrics allow for some degree of mismatch between the two sequences, 
by design. Since the SSs represent actual sequences of user interactions with an 
application, slight variations in the sequences (e.g. transpositions, character 
misalignment) shouldn’t preclude them from being placed into the same 
category. Some sample sequence pairs and their corresponding LCS and Jaro 
distance values are provided in Table 1 to show how similarity between SSs 
translates to a numerical value. 

 
Table 1. Sample sub-sequence pairs with corresponding Jaro distance 

values and longest common sub-sequence. 

Sample sub-sequence 
pairs 

Jaro 
Distance 

Longest Common Sub-sequence 

[9, 44, 2, 44, 1] 
[44, 9, 49] 0.52 1 

[40, 44, 21, 21, 21] 
[44, 40, 32] 0.52 1 

[20, 21, 48] 
[26, 48, 21, 9, 45] 0.52 1 

[21, 9, 49, 48] 
[45, 9, 49, 48, 9] 0.78 3 

[11, 8, 40, 32, 9] 
[11, 9, 40, 32] 0.78 3 

[8, 44, 40, 32, 44] 
[44, 9, 40, 44] 0.78 3 

[2, 3, 5, 53, 1] 
[3, 5, 53, 1] 0.93 4 

[8, 21, 20, 49] 
[8, 21, 21, 20, 49] 0.93 4 

[2, 3, 2, 44] 
[5, 2, 3, 2, 44] 0.93 4 

 

 Running the community detection clustering algorithm on the network model 
derived from the full set of unique nodes using either distance metric was 
relatively unsuccessful. The network was not inherently modular due to large 
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average closeness between nodes of the network structure, even when strict 
minimum similarity metric thresholds were used to reduce the number of edges 
between nodes.  
 Our solution to this problem was to reduce the number of SSs used to 
construct the network model, prior to running the community detection algorithm.  
These ‘seed’ nodes were selected from the set of length-3 sequences with 
frequency of occurrence greater than a minimum threshold (chosen to be 4).  A 
small network was constructed from these sequences using LCS length as the 
distance metric between nodes, and a minimum LCS length = 2 for an edge to be 
placed between two nodes. The community detection algorithm resulted in a 
partition that was used as the seed for determining the community membership 
of the remaining SSs in the collection. Longer sequences (lengths 4-6) that were 
direct descendants of the length-3 seeds (i.e. have one of the seeds as their first 
3 values) with frequencies of occurrence greater than 4 were directly connected 
to the seed nodes, creating a hierarchical skeleton structure for each community, 
against which all other SSs were compared. 
 The remaining unique sequences, the vast majority of which were singletons, 
were compared to the nodes in the skeleton of each community, using the Jaro 
distance as the measure of similarity. If the Jaro distance was ≥ 0.8 for a single 
community, this SS was considered an associate of the community. Figure 28 
depicts the network representation of the unique sequences collected from the 
Neon sessions. Nodes and edges are colored by community membership, and 
there were 9 total communities identified from this set of sub-sequences.  
Skeleton nodes and edges are shown in white. The number of SSs assigned to 
each community varies considerably.   
 
 
 

 

Figure 28: Network representation of the sub-sequences extracted from all 
of the Neon user sessions. 
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 By constructing the network in this way, we were able to connect the vast 
majority of the remaining unique sequences with a single community. i.e., there 
were very few instances of SSs being equally similar to a member of the skeleton 
of more than one community.  The number of communities identified for each 
application, as well as the proportion of all the unique sequences associated with 
one of the communities is shown in Table 2. 
 
 

Table 2. Sub-sequence statistics for all applications. 

Application Number of 
activity 
codes 

Total number of 
unique sub-
sequences 
collected from all 
users/sessions of 
all lengths (3-6) 

Number of 
communities 
(clusters) 

% of sub-
sequences 
accounted for 
by the 
clusters 

Neon 60 6558 9 86.1% 
Newman 28 3419 6 79.2% 
Minerva 127 10840 11 70.8% 
Resonant 25 3036 6 82.9% 
Aperture Tiles 114 7530 8 86.2% 
FEAT 34 5347 7 96.0% 

 

  
We generated several metrics from the unique set of SSs collected for each tool 
for each user’s session.  A description of each of the metrics is provided in Table 
3 below. Overall, the metrics are designed to assess the diversity of behavior 
patterns exhibited by each user during their sessions.  
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Table 3. Description of metrics derived from sub-sequence statistics. 

Unique sub-sequences and 
singletons 

The total number of unique SSs observed 
during a user’s session was determined, as 
well as the number of times each SS 
occurred.  Singleton activities occurred only 
once during the session. 

prop_unique_L(3, 4, 5, 6, all_L) 
number of unique SSs in a session / total 
number of SSs in the session, and the lengths 
of those SSs (“L”) 

prop_singletons_L(3, 4, 5, 6, 
all_L) 

number of SSs occurring 1 time in a session / 
total number of SSs in the session, and the 
lengths of those SSs (“L”) 

Uniqueness of the sub-
sequences 

Each sub-sequence represents a series of 
user interactions with the application. A 
unique-activity (UA) SS is one where there 
are no repeated activities in the SS, e.g. [1, 5, 
11, 2]  Similarly, a unique-elementGroup 
(UEG) SS is one where each activity in the 
sequence corresponds to an interaction with a 
different elementGroup, as defined by USER-
ALE logging scheme. 

prop_num_all_unique_codes_L(
3, 4, 5, 6, all_L) 

number of all UA SSs / total number of unique 
SSs in the session, and the lengths of those 
SSs (“L”) 

prop_counts_all_unique_codes_
L(3, 4, 5, 6, all_L) 

total number of observed instances of the UA 
SSs / total number of SSs in the session, and 
the lengths of those SSs (“L”) 

prop_num_all_unique_eg_L(3, 
4, 5, 6, all_L) 

number of all unique UEG SSs / total number 
of unique SSs in the session, and the lengths 
of those SSs (“L”) 

props_counts_all_unique_eg_L(
3, 4, 5, 6, all_L) 

total number of observed instances of the 
UEG SSs / total number of SSs in the 
session, and the lengths of those SSs (“L”) 

Bouncing sub-sequences 

A sub-sequence is classified as ‘bouncing’ if 
the activities in the sequence bounce back 
and forth between two different activities, e.g. 
[1, 2, 1, 2] 
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prop_bounces_L(3, 4, 5, 6, 
all_L) 

total number of observed instances of 
bouncing SSs / total number of SSs in 
session, and the lengths of those SSs (“L”) 

prop_unique_bounces_L(3, 4, 5, 
6, all_L) 

number of SSs defined as bouncing / total 
number of unique SSs in the session, and the 
lengths of those SSs (“L”) 

 

 Part of the exercise of validating new metrics is examining what information 
those metrics contain. Another part is in understanding whether information 
between metrics is redundant. In evaluating the first question for sub-sequence 
metrics, we find that the length of sub-sequences is not a key indicator of user 
experience or task performance (as we found last year): the relationships 
between SS length metrics did not scale with either performance variables (e.g., 
task accuracy, time-to-complete) or experience variables (e.g., cognitive load, 
engagement). Rather we found that metrics describing specific usage of SSs 
were related to (or proxies for) performance and user experience variables. 
Particularly, the composition of sub-sequences users generated and the number 
of times they used these sub-sequences (i.e., singletons) were predictors of 
performance and user experience. The relationships between these metrics and 
performance/experience metrics were consistent regardless of the length of SSs 
observed. It’s likely that these effects were masked last year based on the way 
we extracted SSs last year. 
 We find a few interesting patterns: first, the uniqueness of SS users 
generated (Uniqueness of Sub-sequences) describes how varied the 
composition of their SSs were—whether SSs were composed with a variety of 
activities (e.g., hover, toggle, scroll). We find that users who generated a large 
proportion of SSs composed of unique activities (different from one another) 
were more likely to show high cognitive load (r = .41, p < .05) and report low task 
engagement (r = -.38, p < .05). The second key pattern we find is that users that 
generated a high proportion of SSs composed of unique UI element interactions 
(e.g., maps, plots, tables) were also more likely to report high cognitive load, 
specifically frustration with the interface (r = .51, p < .01). The third pattern we 
find is that users with a large portion of single use SS (singletons) are more likely 
to report low cognitive load (r = -.38, p < .05) and high engagement (r = .74, p < 
.001). Users with a higher proportion of single use SS were also more likely to 
take less time to complete tasks (r = -.60, p < .001). These findings posit a 
juxtaposition between the uniqueness or variety within sequences and the 
number of times individual workflows (e.g., SS) are made use of. 
Our interpretation of these findings is that SS metrics for uniqueness capture 
floundering or frustration. Users that are composing workflows (e.g., SS) of 
wholly unique elements may be randomly testing patterns of interactions rather 
than demonstrating systematic, integrated usage of applications. While one might 
at first expect that using these kinds of workflows would result in a greater 
distribution of effort across all possible activities (e.g., diffuse or not-peaked use), 
this doesn’t appear to be the case. In fact, SS uniqueness metrics are 
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uncorrelated with BP-HMM metrics (r = -.22, p = .21).  The difference between 
the two is likely explainable based on the fact that BP-HMM metrics account for 
how activities are integrated in time, not just raw frequencies. 
SS singleton metrics likely capture an appropriate fit of UI workflow to tasks. 
Singleton metrics are inversely correlated with BP-HMM metrics (r = -.41, p < 
.05) and somewhat redundant with BP-HMM metrics for peakedness, suggesting 
that they tap into how appropriately activities were selected and used together in 
time.  
 Using step-wise regression, we also observe that BP-HMM peakedness 
metrics and SS uniqueness metrics are completely independent measures of 
cognitive load. Thus, when added together in multiple regression equations for 
cognitive load, they collectively account for nearly 40% of the variation in self-
reported cognitive load. Based on our year 2 findings (36% of variance 
explained), this is 4% better prediction than pupillometry (e.g., eye-tracking) on 
the same measure.  

 
 
4.2.3. XDATA Application Evaluation. Our analytic workflow for evaluation is to first 

provide descriptive statistics about applications across metrics (performance, 
difficulty, usability, etc.) that are easiest to interpret because their information is 
intrinsic to the measure, e.g., questionnaires, performance metrics. Following 
that we report descriptive statistics for metrics that emerge from intuitive models, 
however, they are not explicitly labeled by users. We then take steps to 
normalize data prior to determining ranks for applications, based on their 
performance against metrics. Finally, we provide rankings for which applications 
performed best and worst. 
 In year 3, 6 applications were tested with users recruited by DARPA. These 
applications were developed to address one of three challenge problems, issued 
by DARPA—Population Movements, De-Aliasing, and Financial Fraud. 
Evaluations were performed with care so as to invite fair comparisons between 
applications within and between challenge problems. In year 4, the same 
applications were tested on a massive scale using an MTURK sample of over 
1000 persons. Below we present findings and comparisons between applications 
on a variety of metrics computed from measures described above (see 4.2.2). 
Findings are presented for each evaluation activity, side-by-side. Overall, we 
observed few differences in major findings between the two activities. However, 
where differences do occur, we defer to findings from year 4 for which there was 
substantially more statistical power due to the larger finding. Additionally, it is 
worth noting that with the large samples, standard measures of statistical 
significance are generally inflated. As such, we report effect sizes, which provide 
a clearer depiction of real differences.  
 Differences between applications are presented using box plots. Box Plots 
provide a better characterization of differences between classes as they depict 
the distribution of scores for each class (e.g., applications) and central tendency 
measures that make skewed distributions easier to identify than histograms or 
bar charts. Whiskers on box plots provide detail on the interquartile range (Tukey 
Boxplot), e.g., the spread of the distribution of scores on each metric for each 
application. The “box” itself represents the true central tendency or mass of the 
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distribution. The solid line represents the median score of the distribution, which 
is a measure of central tendency that is less sensitive to skews than means, or 
averages. Hollow dots represent outliers in the tails. Where skews exist, we did 
not attempt to normalize distributions for evaluation purposes because the goal 
of evaluation is accurate description, not inference (e.g., prediction). Outliers 
depicted in box plots were not removed, either, because data used for evaluation 
was filtered for cases reflecting non-compliance. Examples of non-compliance 
are participants not spending sufficient time on tasks (<5mins of 30mins total), or 
participants simply “clicking through” tasks, as measured by >60 clicks per 
minute average mouse-click activity rate, independent of other activities (e.g., 
pan, scroll, etc.). Our report below reflects the most accurate accounting of 
findings. 
 In year 3 and 4 we first analyzed task performance metrics and users’ 
subjective ratings of their experiences with the application. As they are concretely 
labeled measures of usability, they provide context for interpreting findings 
related to activity during tasks.  
 We began each evaluation analysis by examining task performance, as 
measured by the number of correctly answered questions within operational 
tasks given to participants, of which there were two tasks each composed of 5 
questions (10 questions total). Our experimental design has a repeated 
measures component: users perform two tasks in sequence. This allows us to 
examine whether proficiency with applications and performance improves with 
practice. The order with which these tasks are presented to users are 
counterbalanced across users so as to rule out whether the order of tasks has a 
systematic impact on the performance of tasks. In Year 3, we found significant 
differences between applications (F(5,34) = 8.30, p < .000): users of Resonant 
and Newman performed best (Figure 29). Corrected, post-hoc comparisons 
clearly indicate that Newman users were statistically more accurate than all other 
applications, save Resonant and Neon.  Resonant users were more accurate 
than Aperture users, as were Neon users. In Year 4, we found a sizeable effect 
for statistically meaningful differences between applications (F(5,653) = 106.8, p 
< .000). Again, post-hoc tests confirm users of Resonant and Newman performed 
best, and there were no differences between other applications (Figure 29). 
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Figure 29. Task Performance Differences Between Applications  
(Yr 3-Left, Yr 4-Right). 

 
 
Next, we examined whether participants’ performance improved between 

repeated exposures with the applications. In year 3, a pair-samples t-test across 
each of users’ sessions revealed no differences in performance between 
sessions (t (39) = .24, p = .81). In year 4, we discovered very small differences in 
performance between sessions (given the sample size; t (658) = 4.24, p < .000). 
These findings suggest that participants did not improve in task performance 
across different tasks, even with repeated exposure with the same application. 
We then examined whether session-related performance differences were 
systematically different between applications.  

 

 
 
 

Figure 30. Task Performance Differences Between Sessions, by Application  
(Yr 3-Left, Yr 4-Right). 
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In year 3, we found no differences in task-related improvement that would 
be attributable to differences across applications (F (5,34) = .72, p = .62); post-
hoc pair-wise analyses confirm this is the case. We found the same or similar 
pattern in year 4. Though we detected trivial differences (F(5,653) = 4.44, p < 
.000) between applications, post-hoc comparisons reveal no statistically 
meaningful differences between pairs of applications (Figure 30).  
 Next, we analyzed how much time participants spent, on average completing 
tasks, which is relevant for understanding participants’ efficiency while using 
specific applications. Time-on-Task was computed by extracting time stamps 
from the start and end times of each of 10 task components that were completed 
by users (or started), finding the difference in time between those times, and 
summing across all 10 task component time differences. In Year 3, we find no 
statistical differences on this comparison (F(5,34) = 1.31, p = .28) in the ANOVA 
model (Figure 31). However, corrected post-hoc comparisons confirm that Feat 
users were far more likely to take more time in completing their tasks than all 
applications except Minerva. We found no other statistical differences between 
applications in year 3. In year 4, we find small, statistically meaningful differences 
(F(5, 658) = 37.8, p < .001). Post-hoc pair-wise comparisons highlight differences 
between de-aliasing applications (Newman, Resonant) and other applications, 
such that participants using these applications spent less time-on-task. There 
were also small differences between FEAT, which required the most time-on-task 
and population movements applications (Aperture, Minerva, and Neon) (Figure 
31).   
 

 
 

Figure 31. Time-to-Complete Task Differences, by Application 
 (Yr 3-Left, Yr 4-Right). 

 
 
 The next analyses we perform in course of evaluation is to investigate how 
participants rated the application, and label their experiences with applications 
through the various post-task questionnaires they complete. Not only are these 
analyses descriptive, but they also provide valuable context for interpreting 
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findings across measures, given their collinearity. This is also for normalization in 
rankings.  
 The first of these analyses is to examine participants’ self-reports of task-
related difficulty; they were asked to rate how difficult they felt their tasks were, 
independent of the application they were asked to complete the task with. In year 
3, our small sample of analysts reported statistically meaningful differences 
between applications (F(5,19) = 5.83, p < .01). Post-hoc pairwise comparisons 
indicated that differences were primarily driven by dealiasing tasks associated 
with the Newman and Resonant applications, which were rated as less difficult 
than most other applications, particularly Aperture, Minerva, and FEAT. In year 4, 
our large MTURK sample also reported statistically meaningful differences in the 
difficulty of tasks associated with challenge problems (F(5, 591) = 93.6, p < .000). 
Post-hoc pairwise comparisons indicate that these differences were largely 
driven by dealiasing tasks (Newman, Resonant applications), which were rated 
much less difficult than other tasks. However, we found that population 
movement tasks with Neon were rated significantly less difficult than the same 
tasks paired with Aperture, and financial fraud tasks paired with FEAT.  
 

 
 
 
Figure 32. Differences in Self-Reported Task Difficulty, by Application 

(Yr 3-Left, Yr 4-Right). 
 
 
These findings suggest that certain tasks were systematically easier than others, 
with dealiasing tasks rated least difficult. Also, while tasks were almost identical 
across tools situated within specific challenge problems (e.g., population 
movements), participants systematically rated tasks paired with specific 
applications (Aperture) as being difficult, while other participants performing the 
same tasks with different applications as less difficult. Again, participants were 
asked to report on how difficult the task was, independent of the application they 
were asked to perform it with. This suggests that participants were unable to de-
couple the intrinsic difficulty of the task with the difficulty imposed on the task by 
the application. We do not believe that these effects are driven by expert- or 



Approved for Public Release; Distribution Unlimited. 
45 

 

novice-effects, given that similar within class (e.g., challenge problem) 
differences in difficulty were observed for both our year 3 sample—with self-
selecting analysts (e.g., experts), and our year 4 sample with public MTURK 
users. Generally, our findings from year 4 (MTURK users) replicate our findings 
from year 3 (Figure 32). 
 We next investigated participants’ self-reported cognitive load, which is the 
added task difficulty or mental effort imposed by the application used to complete 
tasks, independent of how intrinsically difficult the task itself is. We collected 
labeled user data about their cognitive load through post-task questionnaires, 
following their experiences with applications. Participants were asked to rate 
each operational task component based on facets of cognitive load. In year 3, 
our small sample of analysts reported statistically meaningful differences in how 
the various XDATA applications introduced cognitive load into their tasks (F(5,26) 
= 4.76, p < .01). Corrected post-hoc comparisons indicate that Newman users 
were substantially less likely to indicate that their tasks required additional mental 
effort than all other applications except Neon and Resonant. In year 4, our large 
sample of MTURK participants also reported statistically meaningful differences 
in how XDATA applications introduced cognitive load into their tasks (F(5, 658) = 
41.31, p < .001). Again, corrected post-hoc comparisons indicated that users of 
Newman and Resonant reported the least cognitive load. However, with a larger 
sample size, our year 4 evaluation indicates that users of Aperture reported the 
most cognitive load. Other differences between applications within class 
(challenge problems) were not significant (Figure 33).  
 

 
Figure 33. Differences in Self-Reported Cognitive Load, by Application 

(Yr 3-Left, Yr 4-Right). 
 

 
 In our next examination we explored participants’ reports of task engagement, 
which reflects the degree to which participants were immersed within their tasks 
and lose a sense of time. In year 3, our ANOVA models indicate significant 
differences between applications on engagement measures (F(5,27) = 3.99, p < 
.01). Corrected, post-hoc comparisons indicate that differences between 
Aperture and Minerva, and Newman and Minerva are driving these effects. Users 
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of Aperture were most consistently engaged overall. In year 4, our large sample 
of MTURK participants, clarified differences between applications. Again, 
statistically meaningful differences (although small, given the sample size) 
between applications were observed (F(5, 658) = 12.23, p < .001). Corrected 
post-hoc comparisons indicate that participants who worked with de-aliasing 
applications (Minerva and Resonant) reported the most engagement. Corrected 
post-hoc comparisons suggest that participants who worked with de-aliasing 
applications reported more engagement than those who worked with Aperture, 
FEAT, and Minerva, but not Neon (Figure 34).  

 

 

Figure 34. Differences in Self-Reported Task Engagement, by Application 
(Yr 3-Left, Yr 4-Right). 

 
 
 We next examined self-reported differences in task enjoyment—whether 
participants simply enjoyed their tasks (with their applications). In year 3, we did 
not observe any meaningful differences between applications with respect to self-
reported enjoyment (F(2,27) = .806, p = .5). However, in year 4, with our large 
MTURK sample we found small differences between applications with respect to 
task enjoyment (F(5,590) = 9.38, p < .000). Overall, participants reported that 
they enjoyed tasks with dealiasing applications (Newman and Resonant) and 
Neon the most. These three applications were enjoyed significantly more than 
Aperture, and Newman was enjoyed significantly more than both Minerva and 
FEAT applications (Figure 35).     
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Figure 35. Differences in Self-Reported Task Enjoyment, by Application 

(Yr 3-Left, Yr 4-Right). 
 
 

 Finally, we evaluated the XDATA applications with an objective metric of 
usability, using data collecting with Apache SensSoft technology. We utilized a 
well-validated metric of integrated (or dis-integrated) use stemming from our BP-
HMM modeling technique, describing how participants integrate user interface 
elements and allocate their effort across these elements, in time. In this case, the 
metric is signed to describe when users are not integrating various UI elements 
(e.g., low scores are better), as they might if they understood how the various UI 
elements were meant to be used together. This metric shows a strong, positive 
association with subjective measures of workload and cognitive load, and a 
negative association task performance, and outperforms simple “click-counting” 
metrics of activity rate in predicting subjective user reports.  
 In both year 3 and year 4, we found this metric to be most sensitive to 
differences between applications, compared to other measures (as evidenced by 
large F-statistic effect sizes) (Figure 36). While more sensitive, this metric is both 
correlated with self-report measures of usability, and generally illustrate similar 
trends regarding which applications are most usable. In year 3, large, statistically 
meaningful differences on were observed in tests comparing all applications 
(F(5,30) = 41.56, p < .000). Post-hoc comparisons revealed that Aperture users 
evidenced the least integrated use, but was statistically indistinguishable from 
FEAT. These two applications were used in the least integrated way. In year 4, 
with a larger sample, we observed similar, but much larger differences across 
applications, e.g., stronger effect sizes (F(5, 667) = 205.2, p < .000). This is 
notable, given that effects tend to be smaller with larger samples sizes. 
Corrected post-hoc comparisons reveal differences between all pairs of 
applications, except for Aperture and Minerva, which were not different from one 
another in terms of integrated use. FEAT users evidenced the most dis-
integrated use, while Resonant users evidenced the most integrated use.  
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Figure 36. Differences in Objective Integrated Use, by Application 
(Yr 3-Left, Yr 4-Right). 

 
 

 The final step we take in evaluating applications is to rank applications based 
on usability. These ranks are meant to provide program personnel with 
information about the best applications overall—best fit to the tasks users were 
provided with them—as well as the best applications within class (e.g., challenge 
problem). In order to account for the most information in summarizing ranks 
among applications, and to provide a fair assessment of applications, we apply 
various weights within the ranking process. Generally, ranks are calculated by 
ranking applications across each metric we calculate for each application 
(performance, user-experience (subjective ratings), BP-HMM Metrics), then we 
average the ranks for each metric across each application and rank against 
those averages to provide summary ranks for each application (Net Ranks). This 
provides a summary of rankings across metrics, while preserving the scaling and 
signage of each metric (whether high scores indicate positive or negative 
outcomes). However, because ordinal rankings do not take into account the 
actual distance between ranked items (how much they differ from one another 
numerically), subtle and trivial differences between applications can cause 
rankings that are potentially misleading. As such, two weights are applied to raw 
metric values for each application prior to ranking applications against each 
metric.  
 The first weight addresses the sensitivity of the metric—the ability for the 
metric to discriminate between applications given its scaling. In this respect we 
weight each metric value by the metrics’ corresponding F-statistic (see above 
sections) for between application differences. Thus in aggregate, this weighting 
scheme weights the input to averages based on metrics with the most 
discriminant power. The second weight that is applied is for task difficulty. These 
weights are meant to reflect the intrinsic difficulty of the tasks that applications 
are paired with owing to the data and challenge problem they are developed for. 
In certain cases, some applications are meant to address less complex tasks 
(e.g., dealiasing vs. populations) and it is a concern as to whether certain 
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advantages are given to these applications in rankings. Thus, task difficulty 
ratings are averaged across all ratings taken from the same challenge problems, 
as these were similar tasks. These averages are then multiplied by metric values 
that are positively signed (e.g., more weight is given to task performance metrics 
for tasks that were more difficult), and are divided from metrics that are 
negatively signed (e.g., less weight is applied to cognitive load scores for 
applications paired with more difficult tasks). 
 In summary, in year 3 application rankings are given in Figure 37. The 
bounded cells (in orange) reflect metric values for key usability metrics (cognitive 
load, dis-integrated use). The Net Rank column indicates rankings for each 
application across metrics, without weighting. Weighted Rank columns indicate 
ranks after accounting for metric sensitivity (F) and both metric sensitivity and 
task difficulty (diff). Overall, in year 3, de-aliasing applications tended to perform 
better against other applications across different weighting schemes, with 
Newman performing best in that class. FEAT consistently underperformed 
relative to other applications. Within the Population Movements challenge 
problem, Neon consistently performed better than either Aperture or Minerva.  

 

 
Figure 37. Year 3 Application Rankings Against Key Usability Metrics 

 
Year 4 application rankings are given in Figure 38. Again, the bounded cells (in 
orange) reflect metric values for key usability metrics (cognitive load, dis-
integrated use). The Net Rank column indicates rankings for each application 
across metrics, without weighting. Weighted Rank columns indicate ranks after 
accounting for metric sensitivity (F) and both metric sensitivity and task difficulty 
(diff). Overall, in year 4, de-aliasing applications tended to perform better against 
other applications across different weighting schemes, although not as strongly 
when weights were applied reflecting task difficulty (these were with Newman 
performing best in that class). Aperture consistently underperformed relative to 
other applications across weighting schemes. Within the Population Movements 
challenge problem, Neon consistently performed better than either Aperture or 
Minerva.  
 

 
Figure 38. Year 4 Application Rankings Against Key Usability Metrics 
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Overall, it is Draper’s determination that the Dealiasing applications performed 
better than other applications, with Newman being the best application. The two 
applications that consistently underperformed are Aperture and FEAT. Within the 
Population Movements class of application, Neon consistently outperformed both 
Aperture and Minerva. This determination disregards weighting applied to correct 
for differences owing to task difficulty. The reason for this is that it is abundantly 
clear (especially after year 4 analyses) that subjective ratings for applications’ 
usability where highly collinear with ratings for difficulty, regardless of how 
questions were phrased. In particular, participants’ ratings of cognitive load were 
meant to be anchored in how difficult they though the application made the task, 
regardless of the intrinsic difficulty of the task. In contrast, task difficulty ratings 
were solicited with juxtaposing prompts—how difficult the task is regardless of 
the tool used to perform it. Given various statistical analyses reported above, it 
was the case that participants were unable to disentangle the two—this is 
obvious given the metric values for task difficulty relative to task performance, 
cognitive load, etc., and that these value vary within challenge problems or 
application class, even though all applications of the same class were paired with 
nearly identical tasks. The same pattern was also observed in both expert 
samples (e.g., analysts) and novice samples (e.g., MTURK). As such, weighting 
based on difficulty is problematic. At this point it is clear that applications that 
were difficult to use made the task more difficult in general, which is clear 
evidence that specific applications (e.g., Aperture) introduced cognitive load into 
tasks. Therefore, our determination of the application rankings are driven by 
ranks weighted by metric sensitivity (F), not those that also incorporate weights 
for task difficulty. 

 
4.3. Publicity and Community Development 
 

 Draper made significant progress in raising the visibility of SensSoft, as well 
as exploring communities of users in which the technology would have the most 
impact. Over the course of the 4th year of the XDATA program, the Apache 
SensSoft community grew only modestly, however, this is largely due to the fact 
that the bulk of our capabilities were built and transitioned to ASF within the 
same year. Efforts to continue the Apache SensSoft project and grow this 
community will persist well after the completion of the XDATA program. 

 
4.3.1. Inclusion into the Apache Software Foundation (ASF). In May 2016, Draper 

was invited to submit a proposal to include corpus of SensSoft source code into 
the ASF. Our proposal was accepted by unanimous vote in September 2016, and 
Software as a Sensor™ became a part of the ASF as an Apache Incubator 
project. Our Apache champion for this project is Lewis McGibbney (NASA Jet 
Propulsion Laboratory (JPL)), and our other mentors are Wayne Burke, Paul 
Ramirez, and Chris Mattmann. Code was officially transitioned to Apache in 
October 2016 by Draper and our code base was transferred to Apache 
infrastructure by November 2016. From December to the submission date of this 
report, Draper has been preparing for our first official Apache public release of 
our products, this task includes ensuring licensing, build stability, and updating 
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documentation. The project can be found at 
http://incubator.apache.org/projects/senssoft.    
 

4.3.2. Exhibitions, Demonstrations and Public Outreach. As part of our publicity and 
community development efforts, Draper sought to both establish a presence both 
online, as well as in specific communities including, Internet of Things, UI and 
User Experience (UX) practitioners, and business analytics interest groups. 
 Inclusion in the ASF provided a key vehicle to grow a community of interest 
and online presence, in part because of its visibility and opportunities to network 
with the larger ASF open-source community. As a “landing-pad” for our online 
presence, we established a comprehensive website for posting information about 
the Apache SensSoft project, including community information, software 
documentation, links to software repositories (git, github), and interactive 
demonstrations (Figure 39, http://senssoft.incubator.apache.org). Given the 
nature of our technology, our demo allows visitors of the page to interact with the 
page, see their behavior through a live logging server, and a means to visualize 
the behavior of page visitors through the “Bowie” plot (Figure 40). 
 

 
Figure 39. Screenshot of the Apache SensSoft Webpage 

 

http://incubator.apache.org/projects/senssoft
http://senssoft.incubator.apache.org/
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Figure 40. Interactive Demos Hosted on the Apache SensSoft Webpage 

 

 We also formed a social media presence through our Apache message 
boards, a Twitter account (@ApacheSensSoft), as well as a YouTube channel 
(Apache SensSoft) for posting videos and demos (see 
http://senssoft.incubator.apache.org/community/). We coordinated these 
investments with a number of exhibitions at trade-shows throughout 2016 for 
interest groups related to the Internet of Things (Sensors Expo; San Jose, CA, 
5/2016), business analytics (eMetrics Summit; New York, NY, 10/16), and UI/UX 
(UIE21; Boston, MA, 11/16). For these events, Draper prepared distinctive 
branding and marketing materials (Figure 41) to generate interest in the Apache 
SensSoft project, as well as booth set up for exhibitions (Figure 42).   
 
 

 
Figure 41. Apache SensSoft Marketing Materials 

http://senssoft.incubator.apache.org/community/
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Figure 42. SensSoft Exhibition Booth Display 

4.3.3. Transition Opportunities. In addition to public outreach, Draper also reached 
out to transition partners within the USG and DoD. We sought to provide a 
means for providing the innovations and distinctive capabilities developed as part 
of the XDATA program to agencies that would benefit from these efforts. In this 
regard we were successful. In the fall of 2016, NGA Research included the 
SensSoft project as an added task item in an existing collaborative research and 
development agreement (CRADA) held between NGA and Draper. The scope of 
this task involves providing business analytics and user testing services to NGA 
for their current applications, as well as research and development activities to 
benefit future capabilities utilizing SensSoft. In January 2017, NGA approved 
SensSoft software for use within the agency. We are currently working to deploy 
SensSoft within AWS resources provisioned by NGA. Draper has also received 
additional funding through both DARPA (RSPACE) and IARPA (MOSIAC) for 
SensSoft projects. 
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5. CONCLUSIONS 
 
Over the course of four years of performance on DARPA’s XDATA program, 
Draper consistently focused our technical effort to meet the challenges posed by 
Dr. Chris White and Dr. Wade Shen. Blending rigorous scientific research and 
robust software development, Draper was able to innovate new, non-invasive 
methods for evaluating the usability of software applications. Draper’s Software 
as a Sensor™ technology provides the means for collecting high-granularity 
software activity logs as well as a back-end, scalable infrastructure that makes 
these methods available to a wide open-source community through the Apache 
SensSoft project. Modeling approaches we developed to derive insights from 
software activity logs show comparable or discriminating abilities to predict key 
usability metrics, as well as advantages over canonical laboratory and self-report 
methods. In this respect, Draper has substantively contributed a major 
advancement in the field of human computer interaction. With viable transition 
opportunities in the commercial, DoD, and open-source communities, Draper will 
continue to develop this capability and push forward the fields of human 
computer interaction and human system integration. 
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8. LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 
 
ASF  Apache Software Foundation™ 

ALv2 Apache License (version 2) 

API  Application Program Interface 

AWS  Amazon Web Services 

BP-HMM  Beta-Process Hidden Markov Model 

CRADA  Collaborative Research and Development Agreement 

D3 Data Driven Documents 

DARPA Defense Advanced Research Projects Agency 

DOM  Document Object Model 

F  The F statistic refers to a Type III Wald test, otherwise known as an 
Analysis of Variance (ANOVA). Accompanying notation in 
parentheses (e.g., F(x,y)) indicate the number of degrees of 
freedom available for parameter estimation within groups and 
between groups (Statistics). Interpretation: The F statistic 
summarizes the net separation between distributions of data 
organized between different groups of data, each with their own 
average value and standard deviation. The test is meant to 
ascertain whether the groups are members of the same set or 
different sets. A low F statistic would indicate less separation 
between groups, and less confidence that the groups were sampled 
from different distributions.    

HMM  Hidden Markov Model 

HSIRB Human Subjects Independent Review Board 

IARPA Intelligence Advanced Research Projects Agency 

IR&D Internal Research and Development 

JPL Jet Propulsion Laboratory 

JSON Java Script Object Notation 

LCS Longest Common Sub-Sequence 

LOE Level of Effort 

MOT Massive Online Testing 

MTURK Amazon Mechanical Turk 

NGA  National Geospatial Intelligence Agency 
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p   The P value (p) is the probability of obtaining an effect at least as extreme 
as the one observed in a sample data, given that the null hypothesis is 
true (Statistics). Interpretation: A small P value would indicate that if the 
null hypothesis were true (no statistical effect), then a similarly sized 
statistical effect would be a rare occurance.  

r  The Pearson Correlation Coefficient (r) is the linear effect size between 
two variables (vectors or array), as indicated by the slope of a regression 
line describing the relationship between those two variables in 
standardized Euclidean space (Statistics). Interpretation: A correlation 
approaching 1.00 would indicate perfect prediction such that for every 
one unit increase, in standard deviation, for one variable, the other 
variable would increase, in standard deviation, by one unit as well. A 
negative correlation of -1.00 would indicate that for each unit increase 
(standard deviation) of one variable, the other would decrease by one unit 
(standard deviation).   

R2  The squared value of the Pearson Correlation Coefficient (r multiplied by 
itself) (Statistics). Interpretation: results in a percentage that indicates the 
shared covariation between two correlates, or the percent of variation in 
the criterion variable attributable to the variation in the predictor variable, 
per se.   

REST  Representational State Transfer 

S&T  Science and Technology  

SCO+CH  Scale Computation and Codebook Handling 

SENSSOFT  Software as a Sensor™ 

SM  SurveyMonkey.com 

SS  Sub-Sequence 

STOUT  Subject Tracking and Online User Testing (application) 

t  The t value indicates the results of Student’s t-test for difference 
between two groups. It is named for the specialized test distribution 
used to generate its value. It is accompanied by a parenthetical 
indicating the number of degrees of freedom used in estimating its 
parameters (Statistics). Interpretation: The t-test tests for 
differences between two groups of values. A small t-test value 
would indicate trivial or no differences between groups, and little 
confidence that the two groups are not sampled from the same set.  

TAP  Test Application Portal 

UI  User Interface 

UserALE  User Analytic Logging Engine (application) 

UserALEv3  User Analytic Logging Engine (application; version 3) 



Approved for Public Release; Distribution Unlimited. 
60 

 

UserALE,js  User Analytic Logging Engine (application; Java Script) 

USG United States Government 

UX User Experience 
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